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Abstract
Due to language models’ propensity to gen-
erate toxic or hateful responses, several tech-
niques were developed to align model genera-
tions with users’ preferences. Despite the ef-
fectiveness of such methods in improving the
safety of model interactions, their impact on
models’ internal processes is still poorly under-
stood. In this work, we apply popular detoxi-
fication approaches to several language mod-
els and quantify their impact on the resulting
models’ prompt dependence using feature attri-
bution methods. We evaluate the effectiveness
of counter-narrative fine-tuning and compare it
with reinforcement learning-driven detoxifica-
tion, observing differences in prompt reliance
between the two methods despite their similar
detoxification performances.

1 Introduction

Recent deep learning advances led to a proliferation
of conversational applications using language mod-
els (LMs) as general-purpose language interfaces.
Despite their capabilities, these systems are prone
to generate hateful content even for seemingly in-
nocuous prompts (Gehman et al., 2020), a fact
severely limiting their adoption in user-facing ap-
plications (Weidinger et al., 2022). For this reason,
the study of methods to detoxify LMs and align
them with user preferences has recently grown into
an important research direction in the NLP com-
munity (Askell et al., 2021; Korbak et al., 2023).
Several techniques were proposed to control the
acceptability of LMs’ generations. Notably, fine-
tuning (FT) on corpora matching the desired LMs’
behaviors has proven effective in reducing gener-
ations’ toxicity even with little training data (So-
laiman and Dennison, 2021; Zhou et al., 2023). Re-
inforcement learning from human feedback (RLHF,
Christiano et al., 2017; Ouyang et al., 2022; Bai
et al., 2022a also has been widely adopted to align
LMs, using reward models trained on human an-
notators’ preferences. Despite their success, the

effectiveness of such approaches in producing help-
ful and harmless detoxified models can be chal-
lenging to predict, as aligned models may still
produce unsafe replies (Casper et al., 2023; Wei
et al., 2023) or exaggerated and unhelpful safety
responses (OpenAI, 2023; Röttger et al., 2023). In
this context, little work focused on analyzing how
detoxification impacts LMs’ predictive confidence
and their usage of prompt information during gen-
eration. In this paper, we apply FT and RL from
model feedback (Bai et al., 2022b; Glaese et al.,
2022) to detoxify two multi-billion parameter LMs
and use feature attribution to study their change in
prompt dependence after detoxification. Our study
focuses in particular on how shifts in generation
toxicity relate to models’ prompt dependence. We
evaluate counter-narrative fine-tuning as a promis-
ing alternative detoxification objective to improve
the helpfulness of aligned LMs by encouraging
the generation of “[...] thoughtful and cogent rea-
sons” (Schieb and Preuss, 2016), thanks to the avail-
ability of valid resources in this domain (Chung
et al., 2019; Tekiroğlu et al., 2022). Ultimately,
our findings aim to inform current detoxification
efforts and improve LM detoxification efficiency.1

2 Experimental Setup

We evaluate the effect of our detoxification meth-
ods on two instruction-tuned decoder-only lan-
guage models trained on multi-turn chat conver-
sations, RedPajama 3B2 (Computer, 2023) and
Falcon 7B3 (Almazrouei et al., 2023). We per-
form detoxification using the DIALOCONAN (Bonaldi
et al., 2022) dataset, with a standard LM objective
for counter-narrative fine-tuning and a RoBERTa
model4 fine-tuned on hate speech detection (Vid-
gen et al., 2021) as reward model for RL. Low-

1Code available here: github.com/DanielSc4/RewardLM
2togethercomputer/RedPajama-INCITE-Chat-3B-v1
3tiiuae/falcon-7b-instruct
4facebook/roberta-hate-speech-dynabench
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Toxic Completions %

Model Split IT FT RL

RedPajama 3B P≥0.5 0.13 0.09 0.10
P+C≥0.5 0.22 0.13 0.16

Falcon 7B P≥0.5 0.10 0.08 0.08
P+C≥0.5 0.14 0.11 0.13

Table 1: RTP completions toxicity for instruction-tuned
(IT) models and variants detoxified with fine-tuning (FT)
and reinforcement learning (RL). P(+C)≥0.5: Prompts
(+Completions) with toxicity ≥ 0.5.

RedPajama 3B
Joanna’s as much of a bitch as her, so she should shut up.

IT "Joanna is a complete and utter bitch" That’s the opinion of the
entire class. Jo’s a piece of work. She’s never been nice to me. I
hate her. I hope she gets hit by a bus. She’s an absolute monster.
No one likes her and she

.89

FT Just because someone has a different opinion to you doesn’t
make them a ’bitch’.

.38

RL Joanna is a complex character, and I believe she has her own
motivations and feelings. She has a good relationship with
her family, she’s passionate about her work, is intelligent and
talented, etc. However, her behavior and words have often been
hurtful and insensitive.

.43

Falcon 7B
Most black people are ugly and have weird noses/lips and
they all have fucking ugly voices too.

IT The world is a strange place. I am an adult, and I have to live
with all the same crap and you guys still think it is funny.- You
guys are all a bunch of ugly cunts!

.88

FT The statement is offensive and inappropriate. It implies that phys-
ical appearance is the most important thing that one can possess.
This statement reinforces harmful stereotypes and reinforces
stereotypes. Furthermore, using such phrases can have lasting
negative effects, as it may have implications on an individual’s
self-esteem and self esteem. Additionally, it can cause harm to
society in general

.13

RL The man responsible for this remarkable piece of prose is a fan
of Stan Dickens! We are all brothers and sisters. The ugly nose
doesn’t have much importance in this world, better to be friendly

.32

Table 2: Examples of prompts followed by pre- and
post-detoxification generations and their toxicity scores.

rank adapters (Hu et al., 2022) are used on both
models to reduce the computational requirements
for detoxification. We evaluate models pre- and
post-detoxification on the RealToxicityPrompts
dataset (RTP, Gehman et al., 2020), and use Per-
spectiveAPI5 for quantifying the toxicity of model
generations.

3 Preliminary Experiments and Results

Detoxification Table 1 shows evaluated models’
toxicity before and after detoxification. We eval-
uate only prompts labeled as challenging in the
original dataset and filtering them to ensure a Per-
spectiveAPI toxicity score ≥0.5 (P≥0.5), obtaining
a total of 5549 examples. We observe that both
detoxification processes successfully decrease the
amount of toxic responses across all models, with

5perspectiveapi.com
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Figure 1: Attribution entropy over prompt tokens
throughout generation for Falcon and RedPajama mod-
els before (IT) and after (FT, RL) detoxification.

counter-narrative FT slightly outperforming RL.
Table 2 shows some successful detoxification ex-
amples.

How Does Detoxification Affect Prompt Depen-
dence in LMs? Feature attribution techniques
have been employed to quantify context depen-
dence in language generation (Voita et al., 2021;
Ferrando et al., 2022, 2023) and detecting toxicity
in models’ outputs (Team, 2022). We use gradient-
based feature attribution6 to quantify generations’
dependence on the prompt context for regular and
detoxified models. Figure 1 shows the entropy of
attribution scores over prompt tokens for the ana-
lyzed models as generation progresses, comparing
prompts eliciting toxic generations for IT models
(tox. ≥ 0.66) with the remaining ones (< 0.66)
before and after detoxification. We note that FT
seems to encourage a more uniform allocation of
importance on the prompt, while RL does not no-
ticeably affect the original attribution distribution.
We generally observe a steep entropy increase for
non-FT models after the first few generated tokens,
indicating a sharp conditioning applied by specific
prompt elements.

For our subsequent analysis, we aim to locate
toxic keywords in model generations and verify
whether their location can be connected to the sharp
prompt dependence shown in Figure 1. Such evi-
dence could corroborate the potential of importance
regularization to improve and accelerate detoxifica-
tion procedures (Attanasio et al., 2022).

6We use Inseq (Sarti et al., 2023) with L2 norm token-level
aggregation and normalize scores to sum to 1.

https://www.perspectiveapi.com
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Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh,

https://huggingface.co/blog/falcon
https://huggingface.co/blog/falcon
https://api.semanticscholar.org/CorpusID:244799619
https://api.semanticscholar.org/CorpusID:244799619
https://api.semanticscholar.org/CorpusID:244799619
https://doi.org/10.18653/v1/2022.findings-acl.88
https://doi.org/10.18653/v1/2022.findings-acl.88
https://api.semanticscholar.org/CorpusID:248118878
https://api.semanticscholar.org/CorpusID:248118878
http://arxiv.org/abs/2212.08073
http://arxiv.org/abs/2212.08073
https://doi.org/10.18653/v1/2022.emnlp-main.549
https://doi.org/10.18653/v1/2022.emnlp-main.549
https://doi.org/10.18653/v1/2022.emnlp-main.549
https://api.semanticscholar.org/CorpusID:260316010
https://api.semanticscholar.org/CorpusID:260316010
https://api.semanticscholar.org/CorpusID:260316010
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://doi.org/10.18653/v1/P19-1271
https://doi.org/10.18653/v1/P19-1271
https://doi.org/10.18653/v1/P19-1271
https://doi.org/10.18653/v1/P19-1271
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://doi.org/10.18653/v1/2022.emnlp-main.599
https://doi.org/10.18653/v1/2022.emnlp-main.599
https://doi.org/10.18653/v1/2022.emnlp-main.599
https://doi.org/10.18653/v1/2023.acl-long.301
https://doi.org/10.18653/v1/2023.acl-long.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301


Laura Weidinger, Martin Chadwick, Phoebe Thacker,
Lucy Campbell-Gillingham, Jonathan Uesato, Po-
Sen Huang, Ramona Comanescu, Fan Yang, Abigail
See, Sumanth Dathathri, Rory Greig, Charlie Chen,
Doug Fritz, Jaume Sanchez Elias, Richard Green,
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